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Abstract
Novikov algebras were introduced in connection with the Poisson brackets of
hydrodynamic type and Hamiltonian operators in formal variational calculus.
Fermionic Novikov algebras correspond to a certain Hamiltonian super-
operator in a super-variable. In this paper, we show that there is a remarkable
geometry on fermionic Novikov algebras with non-degenerate invariant
symmetric bilinear forms, which we call pseudo-Riemannian fermionic
Novikov algebras. They are related to pseudo-Riemannian Lie algebras.
Furthermore, we obtain a procedure to classify pseudo-Riemannian fermionic
Novikov algebras. As an application, we give the classification in dimension
�4. Motivated by the one in dimension 4, we construct some examples in high
dimensions.

PACS numbers: 02.20.Sv, 02.30.Jr, 02.40.Hw

1. Introduction

Gel′fand and Dikii gave a bosonic formal variational calculus in [1, 2] and Xu gave a fermionic
formal variational calculus in [3]. Moreover, motivated by the super-symmetric theory, a
formal variational calculus of super-variables was given by Xu in [4] which combines the
bosonic theory of Gel′fand–Dikii and the fermionic theory. Fermionic Novikov algebras are
related to the Hamiltonian super-operator in terms of this theory. A fermionic Novikov algebra
A is a vector space over a field F with a bilinear product (x, y) → xy satisfying

(xy)z − x(yz) = (yx)z − y(xz) (1)

and

(xy)z = −(xz)y (2)

for any x, y, z ∈ A. It corresponds to the following Hamiltonian operator H of type 0 [4]:

H 0
α,β =

∑
γ∈I

(
a

γ

α,β�γ (2) + b
γ

α,β�γ D
)

a
γ

α,β, b
γ

α,β ∈ R. (3)
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Fermionic Novikov algebras are a special class of left-symmetric algebras which only satisfy
equation (1). Left-symmetric algebras are a class of non-associative algebras arising from the
study of affine manifolds, affine structures and convex homogeneous cones [5–9]. A Novikov
algebra was introduced as a left-symmetric algebra with commutative right multiplication
operators: an algebra is a Novikov algebra if its product satisfies equation (1) and

(xy)z = (xz)y. (4)

It connects with the Poisson brackets of hydrodynamic type [10–12] and Hamiltonian operators
in the formal variational calculus [1–4, 13, 14]. The commutator of a left-symmetric A

[x, y] = xy − yx (5)

defines a (sub-adjacent) Lie algebra g(A).
There has been a lot of progress in the study of Novikov algebras [15–25]. However,

we know very little about fermionic Novikov algebras except one real non-bosonic fermionic
Novikov algebras of six dimensions [4], some non-bosonic fermionic Novikov algebras in low
dimensions and some fermionic Novikov algebras in high dimensions [26].

A pseudo-Riemannian connection is a pseudo-metric connection such that the torsion is
zero and parallel translation perseveres the bilinear form on the tangent spaces [27]. The
corresponding structure on a fermionic Novikov algebra A is a non-degenerate symmetric
bilinear form f : A × A → F such that

f (xy, z) + f (y, xz) = 0, ∀ x, y, z ∈ A. (6)

Such a fermionic Novikov algebra is called a pseudo-Riemannian fermionic Novikov algebra.
In this paper, we show that the (sub-adjacent) Lie algebra of a pseudo-Riemannian fermionic
Novikov algebra is a pseudo-Riemannian Lie algebra, which was first introduced in [28] and
strongly related to pseudo-Riemannian Poisson manifolds [29] with compatible pseudo-metric.

The paper is organized as follows. In section 2, we show that the (sub-adjacent) Lie
algebra of a pseudo-Riemannian fermionic Novikov algebra is the Lie algebra obtained by
linearizing the Poisson structure at a point of a Poisson manifold with compatible pseudo-
metric and a certain condition on the Levi-Civita contravariant connection. In section 3,
we give a procedure to classify pseudo-Riemannian fermionic Novikov algebras. As an
application, we list the classification in dimension �4 in section 4. Motivated by the one in
dimension 4, we construct some examples in high dimensions in section 5. In sections 6, we
get some conclusions based on the discussion in the previous sections.

Throughout this paper we assume that the algebras are of finite dimension over R.

2. Pseudo-Riemannian fermionic Novikov algebras

A pseudo-Riemannian fermionic Novikov algebra A is a fermionic Novikov algebra with a
non-degenerate symmetric bilinear form f satisfying equation (6). Equations (1) and (2) are
equivalent with equation (2) and

(xz)y − y(xz) + x(yz) − (yz)x = 0. (7)

Therefore, the sub-adjacent Lie algebra g(A) is a Lie algebra with a bilinear product
(x, y) → xy satisfying equations (2) and (5) and

[xz, y] + [x, yz] = 0 (8)

and a non-degenerate symmetric bilinear form f satisfying equation (6). It is a pseudo-
Riemannian Lie algebra, which is a Lie algebra with a bilinear product (x, y) → xy satisfying
equations (5) and (8) and a non-degenerate symmetric bilinear form f satisfying equation (6).
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The notion of pseudo-Riemannian Lie algebras was first introduced in [28], which are
strongly related to pseudo-Riemannian Poisson manifolds [29]. In fact, let P be a Poisson
manifold with Poisson tensor π . A pseudo-metric of signature (p, q) on the cotangent bundle
T ∗P is a smooth symmetric contravariant 2-form 〈 , 〉 on P such that, at each point x ∈ P, 〈 , 〉x
is non-degenerate on T ∗

x P with signature (p, q). For any pseudo-metric 〈 , 〉 on T ∗P , define
a contravariant connection by

2〈Dαβ, γ 〉 = σπ(α) · 〈β, γ 〉 + σπ(β) · 〈α, γ 〉 − σπ(γ ) · 〈α, β〉
+ 〈[α, β]π , γ 〉 + 〈[γ, α]π , β〉 + 〈[γ, β]π , α〉

where α, β, γ ∈ �1(P ) and Lie bracket [ , ] is given by

[α, β]π = Lσπ (α)β − Lσπ(β)α − d(π(α, β))

= iσπ (α)dβ − iσπ (β)dα + d(π(α, β)).

Furthermore if

π(Dαdf, β) + π(α,Dβdf ) = 0

for any α, β ∈ �1(P ) and f ∈ C∝(P ), then the triple (P, π, 〈 , 〉) is called a pseudo-
Riemannian Poisson manifold. When 〈 , 〉 is positive definite we call the triple a Riemann–
Poisson manifold. Let f denote the restriction of 〈 , 〉 on Kerσπ(x). Then, for any point x ∈ P

such that f is non-degenerate, the Lie algebra gx obtained by linearizing the Poisson structure
at x is a pseudo-Riemannian Lie algebra. Let us enumerate some important applications of
pseudo-Riemannian Lie algebras [28, 30].

(1) If g is a pseudo-Riemannian Lie algebra, then there is a pseudo-metric 〈 , 〉 on the dual
g∗ endowed with its linear Poisson structure π for which the triple (g∗, π, 〈 , 〉) is a
pseudo-Riemannian Poisson manifold.

(2) If (P, π, 〈 , 〉) is a Riemann–Poisson manifold and S be a symplectic leaf of P, then S is
a Kähler manifold.

(3) If g is a Riemann–Lie algebra, then any even dimensional subalgebra of the orthogonal
subalgebra defined in [30] gives rise to a structure of a Riemann–Poisson Lie group on
any Lie group whose Lie algebra is g. Moreover, we get a structure of Lie bialgebra
(g, g∗) where both g and g∗ are Riemann–Lie algebras.

Claim 1. Furthermore, if the Levi-Civita contravariant connection D mentioned above satisfies

DDαβγ = −DDαγ β (9)

for any α, β, γ ∈ �1(P ), then gx is the sub-adjacent Lie algebra of a pseudo-Riemannian
fermionic Novikov algebra.

3. Classification of pseudo-Riemannian fermionic Novikov algebras

Let RZ(A) = {x ∈ A | yx = 0,∀ y ∈ A}. Thus

RZ(A) = (AA)⊥, (10)

where (AA)⊥ = {x ∈ A | f (x, yz) = 0,∀ y, z ∈ A}.
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In fact ∀ x, y, z ∈ A,

x ∈ (AA)⊥ ⇔ f (yz, x) = 0 ⇔ f (z, yx) = 0 ⇔ yx = 0 ⇔ x ∈ RZ(A).

Definition 1. RZ(A) is called isotropic if f (x, y) = 0,∀ x, y ∈ RZ(A), otherwise not
isotropic.

(1) If RZ(A) is not isotropic, then there exists a non-degenerate ideal of A whose dimension
equals to dim A − 1.

In fact, since RZ(A) is not isotropic, there exists an element of RZ(A) such that
f (x, x) �= 0, which implies A = Fx + x⊥ and f |x⊥×x⊥ is non-degenerate. Since
0 = f (zx, y) = −f (x, zy),∀ z ∈ A, y ∈ x⊥, then we have zy ∈ x⊥, which implies
yz ∈ x⊥.

According to the above discussion, any pseudo-Riemannian fermionic Novikov algebra
A with RZ(A) not isotropic can be completely determined by a pseudo-Riemannian fermionic
Novikov algebra whose dimension is dim A − 1 as follows.

Let A1 be any pseudo-Riemannian fermionic Novikov algebra with the bilinear form f1

whose dimension is dim A − 1 and A2 be a pseudo-Riemannian fermionic Novikov algebra
with the bilinear form f2 in dimension 1. Define a new vector space by

A = A1 + A2. (11)

Define a symmetric bilinear form f on A by

(1) f |A1×A1 = f1;
(2) f |A2×A2 = f2;
(3) f |A1×A2 = 0.

Define a bilinear product (u, v) → uv on A by

(1) The product restricted on Ai, i = 1, 2, is respectively the product of Ai .
(2) A1A2 = 0.
(3) Lx is a derivation of A1 for any x ∈ A2.
(4) (xy)y = 0,∀ x ∈ A2, y ∈ A1.
(5) f1(xy, z) + f1(y, xz) = 0.

Claim 2. In terms of the product and bilinear form mentioned above, A is a pseudo-Riemannian
fermionic Novikov algebra with RZ(A) not isotropic. And any pseudo-Riemannian fermionic
Novikov algebra with RZ not isotropic is obtainable in this manner.

(2) If RZ(A) is isotropic, then

RZ(A) ⊂ (RZ(A))⊥ = AA (12)

and

dim RZ(A) � dim A

2
. (13)

Furthermore, we have

1 � dim RZ(A) � dim A

2
. (14)
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In fact, in terms of equation (10),

dim RZ(A) + dim AA = dim A, (15)

which implies

RZ(A) �= 0 (16)

since AA �= A.
Choose a basis {e1, . . . , ek, . . . , en, . . . , en+k} of A such that {e1, . . . , ek} is a basis of

RZ(A), {e1, . . . , en} is a basis of AA and

f (ei, ej ) = ±δij , k + 1 � i, j � n,

f (ei, en+j ) = δij , 1 � i, j � k,

f (ei, ej ) = 0, 1 � i, j � k,

f (ei, ej ) = 0, n + 1 � i, j � n + k.

Thus, we can compute the structure constants under the above basis.
Based on the above discussion, we obtain a procedure to classify the pseudo-Riemannian

fermionic Novikov algebras.

Step 1. Find pseudo-Riemannian fermionic Novikov algebras in dimension 1.

Step 2. Assume that we have got all pseudo-Riemannian fermionic Novikov algebras in
dimension p − 1 by induction.

Step 3. According to (1), compute pseudo-Riemannian fermionic Novikov algebras with RZ

not isotropic in dimension p.

Step 4. Based on (2), compute pseudo-Riemannian fermionic Novikov algebras with RZ

isotropic in dimension p for dim RZ = 1, 2, . . . ,
[

p

2

]
, respectively.

In theory, we obtain all pseudo-Riemannian fermionic Novikov algebras. But the
calculation is very difficult, especially for step 4, even in low dimensions. And there is
another problem unsolved. That is, we probably get the same one induced from two different
pseudo-Riemannian fermionic Novikov algebras in dimension p−1 by step 3. Thus, we must
verify which are identical and which are different. It is also a very hard work. However, we
get a new way to classify pseudo-Riemannian fermionic Novikov algebras.

4. Classification of pseudo-Riemannian fermionic Novikov algebras in dimension �4

In the previous section, we give a procedure to classify the pseudo-Riemannian fermionic
Novikov algebras in any dimension. As an application, we get pseudo-Riemannian fermionic
Novikov algebras in dimension � 4.

Let {e1, e2, . . . , en} be a basis of A, then we have

f (eiej , ek) + f (ej , eiek) = 0. (17)

Moreover, a bilinear form on A under the basis {e1, e2, . . . , en} is completely decided by the
matric F = (fij ), where

fij = f (ei, ej ). (18)
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Let
{
ck
ij

}
be the set of structure constants of A, i.e.,

eiej =
∑

k

ck
ij ek. (19)

Denote the (form) character matrix of a pseudo-Riemannian fermionic Novikov algebra by


∑
k ck

11ek · · · ∑
k ck

1nek

...
. . .

...∑
k ck

n1ek · · · ∑
k ck

nnek


 .

Theorem 1. The classification of pseudo-Riemannian fermionic Novikov algebras in
dimension � 2 is given as follows:

Non-degenerate symmetric
Character matrix Dimension Bilinear form satisfying (6) Notation

(1)(0 ) 1 F = (a ) a = ±1

(2)

(
0 0
0 0

)
2 F =

(
a 0
0 b

)
a = ±1,

b = ±1.

Proof.

(1) It is trivial when dim A = 1.
(2) dim A = 2.

(a) RZ(A) is isotropic. Then dim RZ(A) = 1 and there exists a basis {e1, e2} of A

such that e1 is a basis of RZ(A) = AA and f (e1, e2) = f (e2, e1) = 1. Let
e1e2 = ae1, e2e2 = be1. Then a = 0 since f (e1e2, e2) + f (e2, e1e2) = 0 and b = 0
since f (e2e2, e2) + f (e2, e2e2) = 0. It is a contradiction.

(b) RZ(A) is not isotropic. There exists a basis {e1, e2} of A such that f (e1, e1) =
±1, f (e2, e2) = ±1 and e1e2 = ae2. Then a = 0 since f (e1e2, e2)+f (e2, e1e2) = 0.
It is (2). �

Theorem 2. The classification of pseudo-Riemannian fermionic Novikov algebras in
dimension 3 is given as follows:

Non-degenerate symmetric
Character matrix Bilinear form satisfying (6) Notation

(T 1)


0 0 0

0 0 0
0 0 0


 F =


a 0 0

0 b 0
0 0 c


 a = ±1,

b = ±1,

c = ±1

(T 2)


− 1

a
e2 e3 0

0 0 0
0 0 0


 F =


0 0 1

0 a 0
1 0 0


 a �= 0

(T 3)


0 e3 ce2

0 0 0
0 0 0


 F =


a 0 0

0 b 0
0 0 −bc


 a �= 0,

b �= 0,

c �= 0.

Theorem 3. The classification of pseudo-Riemannian fermionic Novikov algebras in
dimension 4 is given as follows:
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Non-degenerate symmetric
Character matrix Bilinear form satisfying (6) Notation

(F1)




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 F =




a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d




a = ±1,

b = ±1,

c = ±1,

d = ±1

(F2)




− 1
a
e2 e3 0 0

0 0 0 0
0 0 0 0

− k
a
e2 ke3 0 0


 F =




0 0 1 0
0 a 0 0
1 0 0 0
0 0 0 b


 a �= 0,

b = ±1

(F3)




0 e3 ce2 0
0 0 0 0
0 0 0 0
0 ke3 kce2 0


 F =




a 0 0 0
0 b 0 0
0 0 −bc 0
0 0 0 d




a �= 0,

b �= 0,

c �= 0,

d = ±1

(F4)




0 0 0 0
0 0 0 0
0 0 e2 −e1

0 0 0 0


 F =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




Here, we only sketch the proofs of theorems 2 and 3 since they are very long calculations
and similar to theorem 1.

(1) dim A = 3.

(a) RZ(A) is isotropic. Then dim RZ(A) = 1 and there exists a basis {e1, e2, e3}
of A such that e3 is a basis of RZ(A) and {e2, e3} is a basis of AA and
f (e2, e2) = a �= 0, f (e1, e3) = f (e3, e1) = 1. Calculating the structure constants,
we have e1e1 = − 1

a
e2, e1e2 = e3, which is (T 2).

(b) RZ(A) is not isotropic. Then A is induced from a pseudo-Riemannian fermionic
Novikov algebra A1 in dimension 2. Then there exists a basis {e1, e2, e3} of A such that
{e2, e3} is basis of A1 and f (e1, e1) = a �= 0, f (e2, e2) = b �= 0, f (e3, e3) = k �= 0.
Since f (e1x, x) + f (x, e1x) = 0 for any x ∈ A1, then e1e2 = me3, e1e3 = ne2. We
have mk + nb = 0 since f (e1e2, e3) + f (e2, e1e3) = 0.
(i) If m = n = 0, we get (T 1) .

(ii) m �= 0, n �= 0. Replacing e3 by me3 and taking c = n
m

, we get (T 3).

(2) dim A = 4.

(a) RZ(A) is isotropic. Then dim RZ(A) = 1 or 2. But it is impossible when
dim RZ(A) = 1. If dim RZ(A) = 2, then there exists a basis {e1, e2, e3, e4} of A

such that {e1, e2} is a basis of RZ(A) = AA and f (e1, e3) = f (e2, e4) = f (e3, e1) =
f (e4, e2) = 1. Calculating the structure constants, we have e3e3 = e2, e3e4 = −e1,
which is (F4).

(b) RZ(A) is not isotropic. Then A is induced from a pseudo-Riemannian fermionic
Novikov algebra A1 in dimension 3.
(i) If A1 is type (T 2), then there exists a basis {e1, e2, e3, e4} of A such that {e1, e2, e3}

is basis of A1 and f (e4, e4) = b. It is not hard to get that

e4e1 = − k

a
e2, e4e2 = −ke3, e4e3 = 0

by equations (6) and (7).
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(ii) If A1 is type (T 3), similar to the above case, we get
e4e1 = 0, e4e2 = ke3, e4e3 = kce2.

(iii) The simplest type induced from (T 1) is (F1). The other ones are (F2) and (F3)

with k = 0.

These are some remarks on these theorems.
(1) (T 2) is the only one with RZ isotropic in dimension 3.
(2) (F4) is the only one with RZ isotropic in dimension 4 and dim RZ = 2.
(3) There does not exist a pseudo-Riemannian fermionic Novikov algebra A with RZ(A)

isotropic and dim RZ(A) = 1 in dimension 4.
(4) We can get (F2) and (F3) induced from (T 2) and (T 3), respectively. But induced

from (T 1), we get (F1), part of (F2) and (F3). Hence, it is important to recognize which of
those obtained by different inductions are identical.

(5) Bai has given the classification of Novikov algebras with such bilinear forms in
dimension � 3 in [31]. Our methods are different, but the results are identical.

5. Some examples in high dimensions

Definition 2. If A = A1 ⊕ A2, where f (A1, A2) = 0 and Ai, i = 1, 2, are non-degenerate
ideals of A, we call A decomposable, otherwise indecomposable.

The indecomposable pseudo-Riemannian fermionic Novikov algebras with RZ isotropic
play a crucial role. (T 2) and (F4) are such examples. Motivated by (F4), we construct a class
of examples in high dimensions, some of which are indecomposable ones with RZ isotropic.

Let A be a vector space with a basis {e1, . . . , en, f1, . . . , fn} in dimension 2n, where
n � 2. Define a bilinear form f on A under the basis {e1, e2, . . . , en} by the matrix

F =




0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1
1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 0




.

Define a bilinear product (u, v) → uv on A satisfying

f1fi = en+1−i , ∀ 1 � i �
[n

2

]
(20)

and

f1fi = −en+1−i , ∀
[
n + 1

2

]
+ 1 � i � n (21)

and otherwise zero.
If n = 2k,A is an indecomposable pseudo-Riemannian fermionic Novikov algebra with

RZ(A) spanned by {e1, . . . , en} isotropic.
If n = 2k + 1, A is decomposable. In fact, let A1 be the subspace of A spanned by

{e1, . . . , êk+1, · · · , en, f1, . . . , f̂k+1, . . . , fn}. Then A1 is a non-degenerate ideal of A with
RZ(A1) spanned {e1, . . . , êk+1, . . . , en} isotropic. Moreover, A1 is indecomposable. Let A2
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be the subspace of A spanned by {ek+1, fk+1}. Then A2 is also a non-degenerate ideal of A

with RZ(A2) = A2. Thus, we have A = A1 ⊕ A2 and RZ(A) spanned by {e1, . . . , en, fk+1}
is not isotropic.

Here, we construct a class of indecomposable pseudo-Riemannian fermionic Novikov
algebras with RZ isotropic in dimension 4k. Hence, although there are not many pseudo-
Riemannian fermionic Novikov algebras in dimension � 4, we believe that there exist many
examples with RZ isotropic, therefore many in high dimensions.

6. Conclusion and discussion

According to the discussion in the previous sections, we obtain some conclusions on pseudo-
Riemannian fermionic Novikov algebras and pseudo-Riemannian Lie algebras.

(1) The sub-adjacent of a pseudo-Riemannian fermionic Novikov algebra is the Lie algebra
obtained by linearizing the Poisson structure at a point of a Poisson manifold with
compatible pseudo-metric and a certain condition (9) on the Levi-Civita contravariant
connection.

(2) The sub-adjacent Lie algebras of pseudo-Riemannian fermionic Novikov algebras are
equivalent with pseudo-Riemannian Lie algebras in less than or equal to four dimensions.

(3) For a fermionic Novikov algebra A,AA �= A. But for a pseudo-Riemannian Lie algebra
g, we neither could prove g �= gg nor found an example with g = gg.

Although there are no answers for some questions, it is useful for getting such connections
among algebra structure, geometry and physics.
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